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1 Propositional Logic

1.1 Propositions

Logic is the study of formal reasoning. A truth value, or truth state, is
which describes a statement of true T , false F , unknown, or subjective. A
proposition, or statement, is a sentence with a truth value. A proposi-
tional variable, or abstract proposition, p is a variable that represents a
proposition.

A compound proposition is a combination of propositions. Compound
propositions are constructed by logical operations. The conjunction p∧q of
two propositions is true if and only if both propositions are true. The disjunc-
tion, or inclusive disjunction, p ∨ q is false if and only if both propositions
are false. The exclusive disjunction p⊕ q is true if and only if exactly one of
the propositions is true. The negation, or complement, ¬p of a proposition
is true if and only if the proposition is false. The order of precedence when
evaluating logical operations is as follows:

1. Parentheses

2. Quantifiers

3. Negation

4. Conjunction

5. Disjunction

6. Connectives

A truth table gives the truth value of a compound proposition based on
each combination of truth values of the component propositions. A compound
proposition with n component propositions generates a truth table with 2n rows.

· · · p q
· · · F F
· · · F T
· · · T F
· · · T T

Table 1: Truth table

The conditional operation, or implication, p =⇒ q on two propositions,
the hypothesis, or antecedent, p and the conclusion, or consequent, q, is
false if and only if the hypothesis is true and the conclusion is false. Lazy
evaluation states that the conditional is true if the hypothesis is false. The
biconditional operation p ⇐⇒ q is true if and only if both propositions
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Conditional p =⇒ q
Converse q =⇒ p

Contrapositive ¬q =⇒ ¬p
Inverse ¬p =⇒ ¬q

Table 2: Conditional relationships

have the same truth value. The conditional and biconditional operations are
logical connectives.

Two propositions are logically equivalent p ≡ q if and only if they always
have the same truth value regardless of the combination of truth values of their
component propositions. A tautology is a proposition p ≡ T . A contradic-
tion is a proposition p ≡ F . A contingency is a proposition that is neither a
tautology nor a contradiction. Equivalent propositions can be substituted for
each other in a compound proposition of which they are a component.

Idempotent Laws p ∨ p ≡ p
p ∧ p ≡ p

Associative Laws (p ∨ q) ∨ r ≡ p ∨ (q ∨ r)
(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

Commutative Laws p ∨ q ≡ q ∨ p
p ∧ q ≡ q ∧ p

Distributive Laws p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

Identity Laws p ∨ F ≡ p
p ∧ T ≡ p

Domination Laws p ∧ F ≡ F
p ∨ T ≡ T

Double Negation Law ¬¬p ≡ p
Complement Laws p ∧ ¬p ≡ F

p ∨ ¬p ≡ T
¬T ≡ F
¬F ≡ T

De Morgan’s Laws ¬(p ∨ q) ≡ ¬p ∧ ¬q
¬(p ∧ q) ≡ ¬p ∨ ¬q

Absorption Laws p ∨ (p ∧ q) ≡ p
p ∧ (p ∨ q) ≡ p

Conditional Identities p =⇒ q ≡ ¬p ∨ q
p ⇐⇒ q ≡ (p =⇒ q) ∧ (q =⇒ p)

Table 3: Laws of propositional logic
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1.2 Predicates

A predicate, or propositional function or open sentence, P (x) is a state-
ment P whose truth value depends on one or more variables x. The domain
of a variable is the set of its possible values. The universal quantifier ∀x
quantifies all values in the domain of a variable. The existential quantifier
∃x quantifies at least one value in the domain of a variable.

A free variable is an unquantified variable. A predicate depends on a free
variable. A bound variable is a quantified variable. A predicate becomes a
proposition when its variables are bound.

A predicate with a universally quantified variable is false if and only if it is
false for at least one value of the variable, called a counterexample, and thus
is vacuously true when the domain is empty. A predicate with an existentially
quantified variable is true if and only if it is true for at least one value of the
variable, called an example, and thus is vacuously false when the domain is
empty.

De Morgan’s Laws give

¬∀xP (x) ≡ ∃x¬P (x)

¬∃xP (x) ≡ ∀x¬P (x)

Nested quantifiers are a series of quantifiers. n nested universal quantifiers
quantify every combination of n values in the domains of the quantified variables.
n nested existential quantifiers quantify at least one combination of n values in
the domains of the quantified variables.

Self exclusion is expressed by nested quantifiers as

∃x∀y((x ̸= y) =⇒ P (x, y))

Uniqueness is expressed by nested quantifiers as

∃x∀y(P (x) ∧ ((x ̸= y) =⇒ ¬P (y)))

1.3 Arguments

An argument is a conditional

p1 ∧ · · · ∧ pn =⇒ q

and can be expressed
p1
...
pn
∴ q

An argument is valid if it is a tautology. An argument is invalid if it is not
a tautology. An argument is invalid if there is a set of values of its component
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propositions for which it is false, called a counterexample. The form of a
natural-language argument is its expression as a logical argument.

An element is a value in the domain of a variable. An arbitrary element
is an element with only properties shared by all elements in the domain. A
particular element is an element with properties including those shared by
all elements in the domain.
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Modus Ponens
p
p =⇒ q
∴ q

Modus Tollens
¬q
p =⇒ q
∴ ¬p

Addition
p
∴ p ∨ q

Simplification
p ∧ q
∴ p

Conjunction
p
q
∴ p ∧ q

Hypothetical Syllogism
p =⇒ q
q =⇒ r
∴ p =⇒ r

Disjunctive Syllogism
p ∨ q
¬p
∴ q

Resolution
p ∨ q
¬p ∨ r
∴ q ∨ r

Universal Instantiation
c is an element
∀xP (x)
∴ P (c)

Universal Generalization
c is an arbitrary element
P (c)
∴ ∀xP (x)

Existential Instantiation
∃xP (x)
∴ (c is a particular element) ∧ P (c)

Existential Generalization
c is an element
P (c)
∴ ∃xP (x)

Table 4: Rules of Inference
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2 Set Theory

2.1 Sets

A set S is an unordered collection of objects. An element x ∈ S of a set is
an object in the set. A singleton is a set of one element. Roster notation
describes a set by its elements

S = {x1, . . . , xn}

Set builder notation describes a set by the properties of its elements

S = {x|P (x)}

The empty set, or null set, ∅ is the set with no elements. A finite set is a
set with a finite number of elements. An infinite set is a set with an infinite
number of elements. The cardinality |S| of a set is its number of distinct
elements.

The universal set U on a domain is the set with all elements in the domain.
A Venn diagram expresses sets as ellipses within the rectangular universal set.

Subset of a superset R ⊆ S ⇐⇒ ∀x ∈ R(x ∈ S) =⇒ |R| ≤ |S|
Equality S = T ⇐⇒ S ⊆ T ∧ T ⊆ S =⇒ |S| = |T |

Proper subset R ⊂ S ⇐⇒ R ⊆ S ∧ S ̸⊆ R =⇒ |R| < |S|
Strict subset

Power set P(S) = {R|R ⊆ S} =⇒ |P(S)| = 2|S|

Table 5: Set relationships

Intersection S ∩ T = {x|x ∈ S ∧ x ∈ T}
Union S ∪ T = {x|x ∈ S ∨ x ∈ T}

Complement S̄ = S∁ = {x|x ̸∈ S}
Set difference S − T = S \ T = {x|x ∈ S ∧ x ̸∈ T}

Relative complement
Symmetric difference S ⊕ T = {x|(x ∈ S ∧ x ̸∈ T ) ∨ (x ∈ T ∧ x ̸∈ S)}

Table 6: Set operations

Two sets are disjoint if
S ∩ T = ∅

Several sets are pairwise disjoint, or mutually disjoint, if every combination
of two sets are disjoint. A partition of a set is one or more sets with the
following properties:

1. Every set is a subset of the original set.

2. No set is the empty set.
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3. The sets are pairwise disjoint.

4. The union of all the sets is equal to the original set.

Idempotent Laws A ∪A = A
A ∩A = A

Associative Laws (A ∪B) ∪ C = A ∪ (B ∪ C)
(A ∩B) ∩ C = A ∩ (B ∩ C)

Commutative Laws A ∪B = B ∪A
A ∩B = B ∩A

Distributive Laws A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)
A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

Identity Laws A ∪ ∅ = A
A ∩ U = A

Domination Laws A ∩ ∅ = ∅
A ∪ U = U

Double Complement Law ¯̄A = A
Complement Laws A ∩ Ā = ∅

A ∪ Ā = U
Ū = ∅
∅̄ = U

De Morgan’s Laws A ∪B = Ā ∩ B̄
A ∩B = Ā ∪ B̄

Absorption Laws A ∪ (A ∩B) = A
A ∩ (A ∪B) = A

Table 7: Set identities

An interval is the subset of R between two endpoints. A closed interval

[a, b]

includes its endpoints. A half-open interval

[a, b)

(a, b]

includes exactly one of its endpoints. An infinite, or open, interval

(a, b)

does not include its endpoints. A subset A of R is well ordered if

∀B∃x ∈ B∀y ∈ B(B ⊆ A ∧B ̸= ∅ =⇒ x ≤ y)
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2.2 Ordered Tuples

An ordered n-tuple S = (x1, . . . , xn) is a set of n elements in which the order
of elements is fixed. An ordered pair is an ordered 2-tuple. An ordered
triple is an ordered 3-tuple. An entry is an element in an ordered n-tuple.

The Cartesian product of n sets is

S1 × · · · × Sn = {(x1, . . . , xn) : x1 ∈ S1 ∧ · · · ∧ xn ∈ Sn}

with
|S1 × · · · × Sn| = |S1| · · · |Sn|

The power of a set is
Sk = S × · · · × S︸ ︷︷ ︸

n times

A string is an ordered n-tuple of characters

s = (x1, . . . , xn) = x1 · · ·xn

The alphabet of a set of strings is the set of distinct characters contained in
any string. The length of a string is its cardinality. The empty string λ is
the string of no characters. The concatenation of two strings is

st = s1 · · · snt1 · · · tn

The Kleene closure of a string is

s∗ = λ ∪ s1 ∪ s2 ∪ · · ·

The Kleene plus closure of a string is

s+ = s1 ∪ s2 ∪ · · ·

A binary string is a string of alphabet {0, 1}. A bit is a character in a
binary string. An n-bit string is a binary string of length n. The parity of a
binary string is the number of bits that are 1.
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3 Relations

3.1 Binary Relations

A binary relation is a set
R ⊆ A×B

The first entry x in any element of a binary relation is related xRy to the
second entry y. The domain is

{a ∈ A : ∃b ∈ B((a, b) ∈ R)}

and the range is
{b ∈ B : ∃a ∈ A((a, b) ∈ R)}

The inverse is
R−1 = {(b, a) ∈ B ×A : (a, b) ∈ R}

The empty relation ∅ is the relation that does not relate any elements to
any elements. A binary relation on a set is a set

R ⊆ A2

An n-ary relation is a subset of the Cartesian product of n sets.
An arrow diagram represents a binary relation as arrows from elements in

the domain to the elements that the first elements are related to. A self-loop
is an arrow from an element to itself.

Reflexive ∀x ∈ A(xRx)
Anti-reflexive or irreflexive ∀x ∈ A¬(xRx)

Symmetric ∀x ∈ A∀y ∈ A(xRy ⇐⇒ yRx)
Anti-symmetric ∀x ∈ A∀y ∈ A(x ̸= y =⇒ ¬(xRy) ∨ ¬(yRx))

Transitive ∀x ∈ A∀y ∈ A∀z ∈ A(xRy ∧ yRz =⇒ xRz)

Table 8: Properties of binary relations

The composition of two binary relations is defined

(a, c) ∈ S ◦R ⇐⇒ ∃b ∈ A(((a, b) ∈ R) ∧ ((b, c) ∈ S))

The power of a binary relation is

Ak = A ◦ · · · ◦A︸ ︷︷ ︸
k times

The transitive closure of a binary relation is

A+ = A1 ∪ · · · ∪A|A|

The transitive closure can be found as follows:
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1. Identify two elements of the relation where the second entry of the first
element is the same as the first entry of the second element, and there is
no element in the relation whose first entry is the first entry of the first
element and whose second entry is the second entry of the second element.

2. Add the element to the relation whose first entry is the first entry of the
first element and whose second entry is the second entry of the second
element.

3. Repeat steps 1-2 until there are no two elements in the relation that satisfy
step 1.

3.2 Binary Orders

A partial order ⪯ is a binary relation that is reflexive, anti-symmetric, and
transitive. A partially ordered set, or poset, on a domain A is

(A,⪯)

A Hasse diagram represents a partially ordered set as elements where a
first element is below a second element if the first element is related to the
second element, and there is a line between the first element and the second
element if there is no element that the first element is related to and that is
related to the second element.

A strict order, or precedence relationship, ≺ is a binary relation that
is anti-reflexive and transitive (this implies that the relation is anti-symmetric).
A strictly ordered set on a domain A is

(A,≺)

A minimal element in an order is an element that no other elements are
related to. A maximal element in an order is an element that is not related
to any other element.

Two elements in an order are comparable if they are related to each other
in either direction. Two elements in an order are incomparable if they are not
related to each other in either direction. A total order is an order in which all
elements are comparable.

An equivalence relation ∼ is a binary relation that is reflexive, symmetric,
and transitive. An equivalence class of an equivalence relation on X is

[x] = {y ∈ X : x ∼ y}

where x is a representative. Equivalence classes are pairwise disjoint. The
quotient of X by ∼, or X modulo ∼,

X/ ∼= {[x] : x ∈ X}

partitions X. A canonical map is a function

f : X → X/ ∼
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3.3 Functions

A function, or well-defined function or mapping or transformation, is

f : X → Y

where X is the domain, Y is the codomain or target. An element of the
domain is related, or mapped, to an element of the codomain.

(x, y1) ∈ f ∧ (x, y2) ∈ f =⇒ y1 = y2

For (x, y) ∈ f , y is the image f(x) of x. The range is

{y|(x, y) ∈ f}

We can also partly define f by the rule

f : x 7→ y

The image of a set S is

f(S) = {f(s) ∈ Y : s ∈ S}

An arrow diagram represents a function as arrows from the first entry to
the second entry of each element in the function, with a vertical list of elements
in the domain on the left and a vertical list of elements in the codomain on the
right.

A function is one-to-one, or injective, if

∀x1 ∈ X∀x2 ∈ X∀y ∈ Y ((x1, y) ∈ f ∧ (x2, y) ∈ f =⇒ x1 = x2)

Then
|X| ≤ |Y |

A function is onto, or surjective or corresponding, if

∀y ∈ Y ∃x ∈ X((x, y) ∈ f)

Then
|X| ≥ |Y |

A function is bijective, or one-to-one corresponding, if it is one-to-one and
onto. Then

|X| = |Y |

The inverse of a function f is a function if and only if f is a bijection. For
(y, x) ∈ f−1, x is the the inverse image, or pre-image, f−1(y) of y. The
inverse image of a set S is

f−1(S) = {x ∈ X : f(x) ∈ S}
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Given a rule completely defining f , the rule completely defining f−1 can be
found by converting the rule to an equation with y, solving for x, and converting
the equation into a rule for y.

The composition of two functions is

g ◦ f : x 7→ g(f(x))

The identity function gives
I(x) = x

The composition of a bijection and its inverse, or vice versa, is the identity
function. The characteristic function is the function that maps an indexed
subset to the binary string where each bit is 1 if and only if the subset contains
the corresponding element of the superset.

Strictly increasing ∀x1∀x2(x1 < x2 =⇒ f(x1) < f(x2))
Strictly decreasing ∀x1∀x2(x1 < x2 =⇒ f(x1) > f(x2))

Increasing or nondecreasing ∀x1∀x2(x1 ≤ x2 =⇒ f(x1) ≤ f(x2))
Decreasing or nonincreasing ∀x1∀x2(x1 ≥ x2 =⇒ f(x1) ≥ f(x2))

Table 9: Properties of functions

3.4 Cardinality

Cantor’s definition of cardinality gives

|X| ≤ |Y | ⇐⇒ ∃f : X → Y (f is injective)

|X| = |Y | ⇐⇒ ∃g : X → Y (g is bijective)

The cardinal number of a set describes its number of elements.
A set is infinite, or an infinity, if it has the same cardinality as a proper

subset of itself. The aleph numbers

{ℵ0,ℵ1, . . . , }

are the cardinal numbers of the infinities in increasing order.

ℵ0 = |N|

The continuum is
c = |R| > ℵ0

A set is finite if
|S| < ℵ0

The cardinal number of a finite set is in N0. A set is countable if

|S| ≤ ℵ0
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A set is countably infinite, or denumerable, if

|S| = ℵ0

A set is uncountable if
|S| > ℵ0

The Cantor-Schröder-Bernstein theorem states

|S| ≤ |T | ∧ |T | ≤ |S| =⇒ |S| = |T |

Cantor’s theorem states
|S| < |P(S)|

It follows that there is no largest cardinality.
The pigeonhole principle states that a function with a domain of cardinal-

ity at least n+1 and a codomain of cardinality at most n cannot be one-to-one.
The generalized pigeonhole principle states that a function with a domain
of cardinality at least n and a codomain of cardinality k maps at least ⌈n

k ⌉
elements of the domain to at least 1 element of the codomain. The converse
states that if a function maps from a domain of cardinality n to a codomain of
cardinality k and maps at least b elements of the domain to at least 1 element
of the codomain, then

n ≥ k(b− 1) + 1
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4 Sequences

4.1 Sequences

A sequence is a function over an indexing set, usually consecutive integers,

{fk} = fi, . . . , fn

whose input is an index and whose output is a term. The terms are indexed.
A finite sequence has finitely many terms, an initial index, and a final
index. An infinite sequence has infinitely many terms.

A sequence is

• increasing if ∀k(ak < ak+1),

• nondecreasing if ∀k(ak ≤ ak+1),

• decreasing if ∀k(ak > ak+1), and

• nonincreasing if ∀k(ak ≥ ak+1).

The terms of a sequence can be defined by an explicit formula. A geo-
metric sequence has the explicit formula

sk = s0r
k

where r is its common ratio. An arithmetic sequence has the explicit
formula

tn = t0 + dn

where d is its common difference.
A recurrence relation is a sequence whose output depends on previous

terms. A dynamical system is a system described by a recurrence relation. A
discrete time dynamical system is a dynamical system described in terms
of discrete time.

Summation notation gives

t∑
i=s

ai = as + · · ·+ at

where i is the index, s is the lower limit, and t is the upper limit. The left
expression is in summation form and the right expression is in expanded
form. Linearity states

t∑
i=s

(ai + b) =

t∑
i=s

ai +

t∑
i=s

b

t∑
i=s

cai = c

t∑
i=s

ai
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where c is independent of i.
The closed form for the summation of the index is

n∑
i=1

=
(n+ 1)n

2

for an arithmetic sequence is

n−1∑
k=0

(a+ kd) = an+
d(n− 1)n

2

and for a geometric sequence is

n−1∑
k=0

ark =
a(rn − 1)

r − 1

A sequence of sets {An} over S has union

b⋃
i=a

Ai = {x : ∃i ∈ S(a ≤ i ∧ i ≤ b ∧ x ∈ Ai)}

and intersection

b⋂
i=1

Ai = {x : ∀i ∈ S(a ≤ i ∧ i ≤ b ∧ x ∈ Ai)}

where ⋃
An =

sn⋃
i=s1

Ai

and ⋂
An =

sn⋂
i=s1

Ai

It follows that for any term Am,

Am ⊆
⋃

An

and ⋂
An ⊆ Am

A sequence of sets {An} over a subset of N is nested if consecutive terms
satisfy the same subset relation. If

An ⊆ An−1 ⊆ · · ·

then ⋃
An = A1
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and for a finite indexing set ⋂
An = An

If
A1 ⊆ A2 ⊆ · · ·

then ⋂
An = A1

and for a finite indexing set ⋃
An = An

4.2 Recurrence Relations

Recursion is the process of computing a function by its own output on smaller
input. A recursive definition for a set is a basis of specific elements, a recur-
sive rule that constructs elements from existing elements, and an exclusion
statement that an element is in the set only if it is in the basis or can be
constructed by the recursive rule.

A recurrence relation is a recursive definition for a sequence. The solu-
tion of a recurrence relation is a closed-form expression for the sequence. A
homogeneous recurrence relation describes a term as a combination of only
previous terms. A linear homogeneous recurrence relation is

fn = c1fn−1 + · · ·+ ckfn−k

where ck ̸= 0 and the degree is k. The characteristic equation of a linear
homogeneous recurrence relation is

xn = c1x
n−1 + · · ·+ ckx

n−k

p(x) = xk − c1x
k−1 − · · · − ck = 0

Solutions to the characteristic equation are solutions to the recurrence rela-
tion. If the characteristic equation has a root x with multiplicity m, then the
recurrence relation has solutions

fn = xn, . . . , fn = nm−1xn

The general solution to a linear homogeneous recurrence relation is

fn = t1x
n
1 + · · ·+ tkx

n
k

where t1, . . . , tk are parameters and x1, . . . , xn are solutions to the recurrence
relation.

Substituting initial values gives a linear system whose solution gives the
values of the parameters for the solution. It follows that a solution requires as
many initial values as the degree of the recurrence relation.
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A non-homogeneous linear recurrence relation is a linear recurrence
relation that contains terms that are constant or a function of n. The associ-
ated homogeneous recurrence relation is the recurrence relation without
the non-homogeneous terms.

The homogeneous solution f
(h)
n is the general solution to the associated

homogeneous recurrence relation. A particular solution f
(p)
n can be guessed

and verified by substitution into the recurrence relation. If the non-homogeneous
terms are

p(n)sn

where p(n) is a polynomial of degree t and s is a constant, then

• if s is not a root of the characteristic equation for the associated homoge-
neous recurrence relation,

f (p)
n = (dtn

t + · · ·+ d1n+ d0)s
n

• if s is a root of the characteristic equation for the associated homogeneous
recurrence relation of multiplicity m,

f (p)
n = nm(dtn

t + · · ·+ d1n+ d0)s
n

where d0, . . . , dt are constants. The general solution to a non-homogeneous
linear recurrence relation is

fn = f (h)
n + f (p)

n
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5 Number Theory

5.1 Modular Arithmetic

Number theory is the study of integers. A nonzero integer x divides another
integer y, or x is a factor of y or y is divisible by x or y is a multiple of x,

x | y ⇐⇒ ∃k ∈ Z(y = kx)

and otherwise x does not divide y

x ∤ y ⇐⇒ ∀k ∈ Z(y ̸= kx)

A linear combination of terms x1, . . . , xn is

c1x1 + · · ·+ cnxn

where c1, . . . , cn are constants.

x | y1 ∧ · · · ∧ x | yn =⇒ x | (c1y1 + · · ·+ cnyn)

Integer division, or Euclidean division, expresses the division of two
integers as an integer quotient and an integer remainder, or modulus. The
Division Algorithm states

∀n ∈ Z∀d ∈ Z+∃q ∈ Z∃r ∈ Z∀s ∈ Z∀t ∈ Z
((0 ≤ r ≤ d− 1 =⇒ n = qd+ r)

∧(0 ≤ t ≤ d− 1 ∧ (q ̸= s ∨ r ̸= t) =⇒ n ̸= sd+ t))

Then

q = n div d

r = n mod d

where div is the integer division operator and mod is themodulo operator,
both of which have the same precedence as multiplication. Note the difference
between the division operation and traditional division in the case of a negative
quotient.

Modular arithmetic is the modulo on arithmetic operations. Addition
modulo m and multiplication modulo m are defined on a set as

x mod m

where m is an integer and x is the sum or product, respectively, of two elements.

((x mod m) + (y mod m)) mod m = (x+ y) mod m

((x mod m)(y mod m)) mod m = (xy) mod m

where m > 1.
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A ring is
Zm = Z/ ∼m

where

∼m = {(x, y) : x ≡ y mod m}
[x] +m [y] = [x+ y]

[x] ·m [y] = [xy]

A field is a nonzero ring in which every element has a multiplicative inverse.
For a field, m is prime.

Equality modulo m, or congruence modulo m, is defined such that x
is congruent to y mod m

x ≡ y (mod m) ⇐⇒ x mod m = y mod m

where m > 0 and
x ≡ y (mod m) ⇐⇒ m | (x− y)

where m > 1.
x ≡ y (mod m) =⇒ x

n
≡ y

n
(mod

m

n
)

where n divides x, y,m.
A pseudo-random number generator outputs deterministic numbers

with relevant statistical properties of random numbers. The linear congruen-
tial generator is {

X0

Xn+1 = (aXn + c) mod m n ≥ 0

where m is the range and a, c are constants chosen for efficiency and utility.

5.2 Factorization

An integer n greater than 1 is prime if

∀x ∈ Z(x > 1 ∧ x ̸= n =⇒ x ∤ n)

and composite if
∃m ∈ Z(1 < m < n ∧m | n)

The fundamental theorem of arithmetic states that every prime or com-
posite number can be expressed as its prime factorization, a unique product
of prime numbers in nondecreasing order. It follows that the prime factoriza-
tion of a prime number contains one factor and that the prime factorization
of a composite number contains more than one factor. The multiplicity of
a factor in a prime factorization is the number of times the factor appears in
the factorization. Factors can be expressed in exponential notation by their
multiplicities.
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The greatest common divisor gcd(x, y) of integers x and y that are not
both zero is the largest positive integer that is a factor of both x and y. The
least common multiple lcm (x, y) of nonzero integers x and y is the smallest
positive integer that is a multiple of both x and y. Positive integers x and y are
relatively prime, or mutually prime or coprime, if

gcd(x, y) = 1

If

x = pα1
1 · · · pαr

r

y = pβ1

1 · · · pβr
r

where p1, . . . , pr are the distinct prime factors of x or y with nonnegative integer
multiplicities α1, . . . , αr in x and β1, . . . , βr in y, then

x | y ⇐⇒ ∀i ∈ Z(1 ≤ i ≤ r =⇒ αi ≤ βi)

and

gcd(x, y) = p
min{α1,β1}
1 · · · pmin{αr,βr}

r

lcm (x, y) = p
max{α1,β1}
1 · · · pmax{αr,βr}

r

Multiplicative inverse modulo n has output s ∈ {1, . . . , n− 1} where

sx mod n = 1

x has an inverse modulo n if and only if x and n are relatively prime.
The primality of an integer greater than 1 is its property of prime or com-

posite. A composite number N has a factor greater than 1 and at most
√
N . A

brute force primality algorithm must check whether each integer at most
√
N

is a factor of N and thus has time complexity Θ(N).
There are an infinite number of prime numbers. The Prime Number

Theorem states

lim
x→∞

π(x)
x

ln x

= 1

where π(x) is the number of prime numbers in {2, . . . , x}.

lnx ≈ 2.3d

where d is the number of digits in x. It follows that a primality algorithm for
N based on random selection has time complexity Θ(n) where n is the number
of digits in N .

Euclid’s algorithm calculates gcd(x, y) by applying

∀x ∈ Z+∀y ∈ Z+(gcd(x, y) = gcd(x, y mod x))
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repeatedly with x < y in each iteration until y mod x = 0. A Diophantine
equation has integer coefficients and solutions. Bézout’s identity states that

gcd(x, y) = sx+ ty

is Diophantine. It follows that

gcd(a, b) = 1 ∧ a | bc =⇒ a | c

The extended Euclidean algorithm finds s, t in Bézout’s Identity by
expressing r = y mod x = y − (y div x)x for each iteration and substituting
the expressions r = y − dx forward into the penultimate expression in reverse
order until the initial case.

gcd(x1, y1) = rn−1 = yn−1 − dn−1xn−1

= yn−1 − dn−1rn−2

...

= yn−1 − dn−1(yn−2 − dn−2(· · · (y1 − d1x1) · · · ))
= (1 + d2 · · · dn−1)y1

− (d1 + (−1)n−1d1 · · · dn−1 + (−1)nd3 · · · dn−1)x1

If x has an inverse modulus n, then the Extended Euclidean Algorithm finds
integers s, t such that 1 = sx + tn. Then (s mod n)x mod n = 1. In fact, if
c = ax+ bn and gcd(x, n) = d | c, then{

a = s− x
dk

b = t− y
dk

for some integer k.
The exponentiation xy mod n can be found by expressing y as a sum of

powers of 2 up to 2p. Then find x2i mod n for each i ≤ p sequentially by
squaring the last result and taking the modulus. Then calculate x as a product
of the moduli of the exponentiations to the relevant powers of 2 and calculate
the final result.

An iterative algorithm for computing xy has p = 1, s = x, r = y initially and
loops while r > 0, replacing p with ps if r mod 2 = 1, s with s2, and r with
r div 2. The algorithm iterates the number of bits in the binary expansion of
y times, and thus has time complexity O(log y). An algorithm for xy mod n
instead replaces p with ps mod n and s with s2 mod n.

5.3 Base

For a base b greater than 1, every positive integer n has a unique base b
expansion of n

n = akb
k + · · ·+ a0b

0 = (ak · · · a0)b
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where ak, . . . , a0 are the digits of the integer in {0, . . . , b− 1}, ak ̸= 0, and k is
nonnegative.

Decimal notation represents integers with base 10. Binary notation rep-
resents integers with base 2 where the digits are bits and 8 bits are a byte.
Hexadecimal, or hex, notation represents integers with base 16 where the
digits are the ten Arabic numerals and the first six Latin script letters.

An integer of base b can be converted to a decimal integer n by its base
expansion, which also gives

n = (((ak)b+ ak−1)b · · · )b+ a0

An decimal integer n can be converted to base b by appending n mod b to the
base b expansion of n div b. The number of digits required for the base b
expansion of a positive decimal integer n is

k + 1 ≥ ⌈logb(n+ 1)⌉

If for bases b and b′

b′ = bm

for some integer m, then each m digits of the base b representation convert to 1
digit of the base b′ representation from the right, with necessary leading zeros.
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6 Combinatorics

6.1 Combinatorial Rules

The product rule states

|S1 × · · · × Sn| = |S1| · · · |Sn|

where S1, . . . , Sn are finite sets. The generalized product rule states that in
a set S of all possible sequences of k items, if there are n1 choices for the first
item and nk choices for the kth item for every possible choice for the first k− 1
items, then

|S| = n1 · · ·nk

The principle of inclusion-exclusion states

|S1 ∪ · · · ∪ Sn| =
n∑

j=1

|Sj |

−
n∑

j=1

j−1∑
k=1

|Sj ∩ Sk| −
n∑

j=1

n∑
k=j+1

|Sj ∩ Sk|

+ · · ·
+ (−1)n+1|S1 ∩ · · · ∩ Sn|

where S1, . . . , Sn are finite sets. The principle of inclusion-exclusion on pairwise
disjoint sets gives the sum rule:

|S1 ∪ · · · ∪ Sn| = |S1|+ · · ·+ |Sn|

The bijection rule states
|S| = |T |

where S, T are finite sets and there is a bijection

f : S → T

A function is k-to-one if it maps exactly k elements of the domain X to each
element of the codomain Y . Then the k-to-one rule states

|Y | = |X|
k

6.2 Combinations and Permutations

An r-permutation is a sequence of r unique elements of a set. The number of
r-permutations of a set of n elements is

P (n, r) =
n!

(n− r)!
= n(n− 1) · · · (n− r + 1)
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Then a permutation is an n-permutation. A permutation with repetition
is a sequence of possibly nonunique elements of a set. The number of permuta-
tions with repetition of a set of n elements is

n!

n1! · · ·nk!

where ni is the number of repetitions of the ith element of the set and

n = n1 + · · ·+ nk

An r-subset, or r-combination, is a subset of r elements. The number of
r-combinations of a set of n elements is

C(n, r) =

(
n

r

)
=

(
n

n− r

)
=

n!

r!(n− r)!

The principle of counting by complement states

|P | = |S| − |P̄ |

where P is the subset of S containing the elements to be counted.
A multiset is a collection of possibly nonunique elements. Two multisets

are equal if they have the same number of each element. The number of ways
to select n total of m different kinds of elements, or n elements into m different
categories, is (

n+m− 1

m− 1

)
Elements in a set are indistinguishable if they are identical, and are otherwise
distinguishable.

Elements No restrictions At most one Same number
per category per category

Indistinguishable
(
n+m−1
m−1

) (
m
n

)
1

Distinguishable mn P (m,n) n!
(( n

m )!)m

Table 10: Common assignment problems

Binomial coefficients are the coefficients of the expansion of a positive
power of a binomial. The binomial theorem states

(a+ b)n =

n∑
k=0

(
n

k

)
an−kbk

where n is a nonnegative integer and a and b are real numbers. It follows that

2n =

n∑
k=0

(
n

k

)
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and

0 =

n∑
k=0

(−1)k
(
n

k

)
and from there that

n
2∑

k=0

(
n

2k

)
=

n
2 −1∑
k=0

(
n

2k + 1

)
for even n, and

n−1
2∑

k=0

(
n

2k

)
=

n−1
2∑

k=0

(
n

2k + 1

)
for odd n.

Pascal’s triangle is a triangular chart where the nth row lists the n + 1
binomial coefficients

(
n

n−1

)
, . . . ,

(
n
n

)
. The 0th and nth coefficients evaluate to 1.

The other kth coefficients evaluate by Pascal’s identity(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
The coefficients of the nth row sum to 2n.

Lexicographical order orders n-tuples by the first entry by which they dif-
fer. To find the next-highest permutation of a set, take the current permutation,
find the rightmost entry ni such that ni < ni+1, swap ni with the next-highest
entry of those to its right, and sort the entries to the right of the former po-
sition of ni. The first permutation is the completely sorted permutation. The
last permutation is completely reverse sorted permutation.

Combinations are ordered as sorted n-tuples. To find the next-highest r-
combination of a set {n1, . . . , nn}, take the current r-combination, find the
rightmost entry ri such that ri < nn−r+i, increment ri, and replace the entries
to the right of ri with the sorted smallest same number of entries that are all
greater than ri. The first r-combination is the set of the first r elements. The
last r-combination is the set of the last r elements.

A generating function of a sequence {fn} is

F (x) =

∞∑
i=0

fix
i

Some generating functions have closed forms that can be found by algebra.
Terms of a generating function can represent the number of combinations of
the term index size of a set. The product of two generating functions gives the
number of combinations of the union of their distinct represented sets.
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Infinite indistinguishable elements 1 + x+ x2 + · · · = 1
1−x

Finite indistinguishable elements 1 + x+ · · ·+ xn = 1−xn+1

1−x

Infinite groups of k elements 1 + xk + x2k + · · · = 1
1−xk

2 infinite indistinguishable elements 1 + 2x+ 3x2 + · · · = 1
(1−x)2

Table 11: Generating Functions of Combinations

A Proofs

A theorem is a statement that can be logically proven. An identity is a
theorem that states mathematical equality. A corollary is a theorem that
follows from another theorem. A conjecture is a statement that is unproven.
A proof is a logical series of justified steps that proves a theorem. A lemma is
a theorem that exists only to prove another theorem. An axiom is a statement
that is assumed true. Common axioms are

• Rules of algebra

• Closure of integers under addition and multiplication

• Parity of integers

• Discretion of integers

• Relative order of real numbers

• Positivity of squares of real numbers

The start of a proof should be clearly denoted by the word ”Proof”. A
proof consists of natural-language sentences with integrated mathematics. A
proof should provide a roadmap of what is assumed, what will be proved, and
what has been proven. Variables and equation blocks should be introduced by
natural language. The amount of detail provided in a proof should depend on
the experience of the target audience. The end of a proof should be clearly
denoted by the acronym ”QED” or the tombstone character. Some common
keywords in proofs are

• thus/therefore/it follows that/then/hence: connect to the previous few
statements

• let/suppose: introduce a new variable

• suppose: introduce a new assumption

• since/because we know that: remind the reader of an earlier statement

• we will prove/we will show: indicate where the proof is going

• by definition: prove a statement from a definition
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• by assumption: prove a statement from an assumption

• in other words: rephrase or specify a statement

• gives/yields: connect to the previous equality or inequality

• without loss of generality: apply proof for one case to other cases

A direct proof assumes the hypothesis of a theorem and proves its conclu-
sion. A proof by contrapositive assumes the negation of the conclusion of a
theorem and proves the negation of its hypothesis. A proof by contradiction
disproves the negation of a theorem. A proof by cases proves a theorem for
each class of its domain. A case is the proof for a single class.

A proof by exhaustion proves a theorem for every element in its domain.
A proof by universal generalization proves a theorem for an arbitrary el-
ement in its domain. An existence proof proves an existential statement. A
constructive proof of existence proves an existential statement for a partic-
ular element in the domain. A nonconstructive proof of existence disproves
the negation of an existential statement.

A base case is the initial term of a sequence of statements. The inductive
hypothesis, or inductive assumption, is the statement that the term directly
preceding another term is true. The inductive step is the statement that a
term is true if the inductive hypothesis is true.

The principle of mathematical induction states that if the base case
and the inductive step are true, then all statements in a sequence are true. The
principle of strong induction describes induction where there may be several
statements in the base case and where the inductive hypothesis states that all
terms preceding another term are true. Structural induction is the process
of proving a property of a recursively defined set using its recursive definition.

The well-ordering principle, or least natural number principle, states
that the natural numbers are well ordered. The well-ordering principle implies
the principle of mathematical induction. A proof by induction may also be
proved by contradiction by considering a minimal counterexample, the min-
imum element of the set of counterexamples.

A combinatorial proof uses combinatorics and the bijection rule. A combi-
natorial proof of identity usually counts by alternate methods to find equivalent
expressions.

B Mathematical Definitions

The natural numbers are the numbers used for counting:

N = {0, 1, . . .}

The integers are the natural numbers and their negatives:

Z = {. . . ,−1, 0, 1, . . .}
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The rational numbers are the quotients of integers where the denominator is
nonzero:

Q =

{
p

q
|p ∈ Z ∧ q ∈ Z ∧ q ̸= 0

}
The real numbers are all numbers including and between integers:

R

The irrational numbers are the real numbers which are not rational numbers:

R \Q

The complex numbers are the sums of real numbers and scalar multiples of
i =

√
−1:

C = {x+ yi : x ∈ R ∧ y ∈ R}

The algebraic numbers are the solutions to integer-coefficient polynomials:

A = {x ∈ C : ∃p = c0x
0 + · · ·+ cnx

n = 0}

The transcendental numbers are the complex numbers which are not alge-
braic numbers:

C \ A

The scalar multiple of a set of numbers is the set that contains only the
multiples of the scalar.

A number is at least another number if and only if

x = c ∨ x > c

and at most another number if and only if

x = c ∨ x < c

Positive numbers are those greater than zero. Negative numbers are those
less than zero. Nonnegative numbers are those at least zero. Nonpositive
numbers are those at most zero.

An integer x is even if
∃k ∈ Z(x = 2k)

and odd if
∃k ∈ Z(x = 2k + 1)

The parity of an integer is its property of even or odd.
An integer n is the perfect square if

∃k ∈ Z(n = k2)

Two integers x, y are consecutive if

x = 1 + y ∨ y = 1 + x
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Two numbers x, y are distinct if

x ̸= y

The factorial of an integer is

n! =

{
1 n = 0

n(n− 1)! n ≥ 1

The floor function ⌊x⌋ maps a real number x to the integer that is closest to
it on the negative side. The ceiling function ⌈x⌉ maps a real number x to the
integer that is closest to it on the positive side. The absolute value function
gives

|x| =

{
−x x < 0

x x ≥ 0

The exponential function gives

bx = b · b︸︷︷︸
x times

where b is the base and x is the exponent. The properties of exponents are

1. bxby = bx+y

2. (bx)y = bxy

3. bx

by = bx−y

4. (bc)x = bxcx

The logarithm function is the inverse of the exponential function. The prop-
erties of logarithms are

1. logb(xy) = logb x+ logb y

2. logb

(
x
y

)
= logb x− logb y

3. logb(x
y) = y logb x

4. logc x = logb x
logb c , c ̸= 1

The solution to the Fibonacci sequence
f0 = 0

f1 = 1

fn = fn−1 + fn−2 n ≥ 2

is

fn =
1√
5

(
1 +

√
5

2

)n

− 1√
5

(
1−

√
5

2

)n

n ≥ 0
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The golden ratio

ϕ =
1 +

√
5

2

describes many natural and artificial proportions.
The arithmetic mean of n numbers x1, . . . , xn is

x1 + · · ·+ xn

n

and the geometric mean where x1, . . . , xn are nonnegative is

n
√
x1 · · ·xn

The AM-GM Inequality states

x1 + · · ·+ xn

n
≥ n

√
x1 · · ·xn

x1 + · · ·+ xn

n
= n

√
x1 · · ·xn ⇐⇒ x1 = · · · = xn
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